# A note on Cordial Labeling Of One Point Union Of Graphs Related To triple -Antena Of $\mathrm{C}_{8}$ and invariance. 


#### Abstract

Mukund V.Bapat ${ }^{1}$ 1. Abstract: We discuss graphs of type $\mathrm{G}^{(\mathrm{k})}$ i.e. one point union of k -copies of G for cordial labeling. We take G as triple-antena graph. A triple-antena graph also called as triple tail graph is obtained by attaching a path $\mathrm{P}_{\mathrm{m}}$ to any three vertices which forms a path $\mathrm{p}_{3}$ in given graph $\mathrm{C}_{8}$. It is denoted by triple$\operatorname{tail}\left(G, P_{m}\right)$ where $G$ is given graph and all the three tails may or may not be identical to $p_{m}$. We take $G$ as $\mathrm{C}_{8}$ and restrict our attention to $\mathrm{m}=2$, and two edges attached at each vertex of $\mathrm{P}_{3}$ on $\mathrm{C}_{8}$. We have taken care that the sum of pendent edges on all the three vertices of path is same, in this case upto 2 . Further we consider all possible structures of $\mathrm{G}^{(k)}$ by changing the common point and obtain non-isomorphic structures. We show all these structures as cordial graphs. This is called as invariance of different structures of $\mathrm{G}^{(\mathrm{k})}$ under cordial labeling.


Key words: cordial, one point union, triple-tail graph, cycle, labeling, vertex.
Subject Classification: 05C78

## 2. Introduction

The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Holton [4], Graph Theory by Harary [5], A dynamic survey of graph labeling by J.Gallian [7] and Douglas West.[8].I.Cahit introduced the concept of cordial labeling [3]. $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ be a function. From this label of any edge (uv) is given by $|f(u)-f(v)|$. Further number of vertices labeled with 0 i.e $v_{f}(0)$ and the number of vertices labeled with 1 i.e. $v_{f}(1)$ differ at most by one .Similarly number of edges labeled with 0 i.e. $e_{f}(0)$ and number of edges labeled with 1 i.e.e $e_{f}(1)$ differ by at most one. Then the function f is called as cordial labeling. Cahit has shown that : every tree is cordial; Kn is cordial if and only if $\mathrm{n} \leq 3 ; \mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is cordial for all m and n ; the friendship graph $\mathrm{C}_{3}{ }^{(\mathrm{t}}$ (i.e., the one-point union of t copies of $\mathrm{C}_{3}$ ) is cordial if and only if t is not congruent to $2(\bmod 4)$; all fans are cordial; the wheel $\mathrm{W}_{\mathrm{n}}$ is cordial if and only if $n$ is not congruent to $3(\bmod 4)$.A lot of work has been done in this type of labeling. One may refer dynamic survey by J. Gallian [7].

Our focus of attention is on one point unions on $\mathrm{C}_{8}$ graphs. For a given graph there are different one point unions (upto isomorphism) structures possible in $G^{(k)}$. It depends on which point on $G$ is used to fuse to obtain one point union. It is called as invariance under cordial labeling. We use the convention that $\mathrm{v}_{\mathrm{f}}(0,1)$ $=(\mathrm{a}, \mathrm{b})$ to indicate the number of vertices labeled with 0 are a in number and that number of vertices labeled with 1 are b. Further $e_{f}(0,1)=(x, y)$ we mean the number of edges labeled with $o$ are $x$ and number of edges labeled with 1 arey. The graph whose cordial labeling is available is called as cordial graph. In this paper we define triple -tail graph and obtain one point union graphs on it. For this we consider $\mathrm{C}_{5}$ and t -pendent edges attached to each of any three vertices forming a path on $\mathrm{C}_{7}$. ( $\mathrm{t} \leq 3$ ).In this paper we discuss the graphs obtained from $\mathrm{C}_{8}$ by fusing an edge each or fusing two edges at at each consecutive three vertices.
3.

## Preliminaries

3.1 Tail Graph: A $(p, q)$ graph $G$ to which a path $P_{m}$ is fused at some vertex. This also can be explained as take a copy of graph $G$ and at any vertex of it fuse a path $P_{m}$ with it's one of the pendent vertex. It's number of vertices are $\mathrm{P}+\mathrm{m}-1$ and edges are by $\mathrm{q}+\mathrm{m}-1$. It is denoted by tail $\left(\mathrm{G}, \mathrm{P}_{\mathrm{m}}\right)$.
3.2 double-tail graph of G is denoted by double-tail(G,Pm).It is obtained by attaching (fusing) path
$P_{m}$ to a pair of adjacent vertices of $G$.It has $q+2 m-2$ edges and $p+2 m-2$ vertices. $(m \geq 2)$
3.3 Fusion of vertices. Let $u \neq v$ be any two vertices of $G$. We replace these two vertices by a single vertex say $x$ and all edges incident to $u$ and $v$ are now incident to $x$. If loop is formed then it is deleted.[4] $3.4 \quad G^{(K)}$ it is One point union of $k$ copies of $G$ is obtained by taking $k$ copies of $G$ and fusing a fixed vertex of each copy with same fixed vertex of other copies to create a single vertex common to all copies. If $G$ is a $(p, q)$ graph then $\mid V\left(G_{(k)} \mid=k(p-1)+1\right.$ and $|E(G)|=k . q$
3.4 triple-tail graph of $G$ is denoted by triple-tail $\left(\mathrm{G}, \mathrm{P}_{\mathrm{m}}\right)$. It is obtained by attaching ( fusing) path Pm to each of three vertices of $G$ that forms a path $P_{3}$.It has $q+3 m-3$ edges and $p+3 m-3$ vertices. $(m \geq 2)$

## Results Proved:

Theorem 4.1 All non- isomorphic one point union on k-copies of graph obtained on $G=$ triple tail $\left(\mathrm{C}_{8}, \mathrm{p}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs.
Proof: From fig.4.1 it follows that there are six non-isomorphic structures of one point union possible at vertices a, b, c ,d, e, f
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ that gives us labeled copies of G as given below..We extend the same to $\mathrm{f}: \mathrm{V}\left(\mathrm{G}^{(\mathrm{k})}\right): \rightarrow\{0,1\}$ to obtain cordial labeling of $\mathrm{G}^{(\mathrm{k})}$. When the one point union is taken at $\mathrm{a}, \mathrm{d}, \mathrm{b}$ or e then type A and type B label are fused alternately at vertex desired vertex of these vertices.. The first copy being type A .


Fig 4.1 one point union may be taken at a, b, c, d, e, f, g


Fig $4.3 v_{f}(0,1)=(6,5) e_{f}(0,1)=(5,6)$


Fig $4.4 \mathrm{v}_{\mathrm{f}}(0,1)=(6,5) \mathrm{e}_{\mathrm{f}}(0,1)=(5,6)$

To obtain one point union of $k$ copies of $G$ at any of the vertices $a, b, c, d$, $e$ when $k=1$ we use type $A$ label. For $\mathrm{k}>1$ For one point union at the vertices $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, e we fuse type A and type B label. When $\mathrm{k}=$ $2 x$ there will be $x$ copies of type $A$ and type $B$ each. When $k=2 x+1$ there will be $x+1$ copies of type $A$ label and $x$ copies of type B label. The label number distribution is $v_{f}(0,1)=(5 k+1,5 k)$ for all $k, e_{f}(0,1)=$ $(6+11 x, 5+11 x)$.when $k=2 x+1, x=0,1,2, .$. The label number distribution is when $k=2 x, x=1,2$, . we have labels on edge are $e_{f}(0,1)=(11+11(x-1), 11+11(x-1))$.In this case the common vertex is with label 0

When one point union is taken at point c or g or f and $\mathrm{k}=1$ Type A label is used. For $\mathrm{k}>1$, for $\mathrm{k}=2 \mathrm{x}$ there will be $x$ copies of type $A$ and type $C$ each. When $k=2 x+1$ there will be $x+1$ copies of type A label and $x$ copies of type $C$ label are used. The label number distribution is $v_{f}(0,1)=(5 k+1,5 k)$ for all $k$, $\mathrm{e}_{\mathrm{f}}(0,1)=(6+11 \mathrm{x}, 5+11 \mathrm{x})$. when $\mathrm{k}=2 \mathrm{x}+1, \mathrm{x}=0,1,2, .$. The label number distribution is when $\mathrm{k}=2 \mathrm{x}, \mathrm{x}=1$, 2 ,..We have labels on edge are $\mathrm{e}_{\mathrm{f}}(0,1)=(11+11(\mathrm{x}-1), 11+11(\mathrm{x}-1))$.In this case the common vertex is with label 1. Thus we observe that All non- isomorphic one point union on k-copies of graph obtained on $\mathrm{G}=$ triple $-\operatorname{tail}\left(\mathrm{C}_{8}, \mathrm{p}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs. \#

Theorem 4.2 All non- isomorphic one point union on k-copies of graph obtained on $\mathrm{G}=$ triple-tail $\left(\mathrm{C}_{8}, 2 \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs.
Proof: From fig 4.5 it follows that there are 6 non-isomorphic structure at points $a, b, c, d, e, f$ and $g$ possible. At these points one can obtain one point union of k copies of graph.


Fig 4.5 one point union may be taken at a, b, c, d, e, f, g

Fig $4.6 \mathrm{v}_{\mathrm{f}}(0,1)=(7,7) \mathrm{e}_{\mathrm{f}}(0,1)=(7,7)$


Fig $4.7 \mathrm{v}_{\mathrm{f}}(0,1)=(8,6) \mathrm{e}_{\mathrm{f}}(0,1)=(7,7)$

Define $f: V(G) \rightarrow\{0,1\}$ that gives us labeled copies of $G$ as above. We extend the same $f: V\left(G^{(k)}\right): \rightarrow\{0,1\}$ to obtain cordial labeling of $G^{(k)}$. To obtain one point union at points a or $b$ or $c$ or $d$ or $f$ we fuse type $A$ label with type B label at one of these required points. When $k=1$ we use type A label. When $k=2 x$ type

A and type B are used x times each. When $\mathrm{k}=2 \mathrm{x}+1$ then type A label is used $\mathrm{x}+1$ times and type B label for x times to obtain $\mathrm{G}^{(\mathrm{K})}$.

The label distribution is $v_{f}(0,1)=(7+13 x, 7+13 x)$ for all $k$ and $e_{f}(0,1)=(7 k, 7 k)$.when $k=2 x+1, x=0,1,2$, .. The label number distribution is $\mathrm{v}_{\mathrm{f}}(0,1)=(14+13(\mathrm{x}-1), 13+13(\mathrm{x}-1))$.when $\mathrm{k}=2 \mathrm{x}, \mathrm{x}=1,2, \ldots$. The common vertex label is 0 .

The one point union at point g is taken then type A and Thpe C label is used. When $\mathrm{k}=1$ only type A label is used. When $\mathrm{k}=2 \mathrm{x}$ type A and type C are used x times each. When $\mathrm{k}=2 \mathrm{x}+1$ then type A label is used $\mathrm{x}+1$ times and type C label for x times to obtain $\mathrm{G}^{(\mathrm{K})}$. The label distribution is $\mathrm{v}_{\mathrm{f}}(0,1)$ $=(7+13 \mathrm{x}, 7+13 \mathrm{x})$ for all k and $\mathrm{e}_{\mathrm{f}}(0,1)=(7 \mathrm{k}, 7 \mathrm{k})$. when $\mathrm{k}=2 \mathrm{x}+1, \mathrm{x}=0,1,2, .$. The label number distribution .when $\mathrm{k}=2 \mathrm{x}, \mathrm{x}=1,2, \ldots \quad \mathrm{v}_{\mathrm{f}}(0,1)=(13+13(\mathrm{x}-1), 14+13(\mathrm{x}-1))$. The common vertex label is 1 . Thus even if we change point common to all copies in $\mathrm{G}^{(\mathrm{k})}$ the cordiality is preserved.

Conclusions: In this paper we define some new families obtained from $\mathrm{C}_{8}$. We take a copy of $\mathrm{C}_{8}$ and to any three of it's adjacent vertices fuse t pendent edges each. We call this as triple-tail ( $\mathrm{G}, \mathrm{t} \mathrm{P}_{\mathrm{m}}$ ) graph.. We show that

1) All non- isomorphic one point union on k -copies of graph obtained on $\mathrm{G}=$ triple-tail $\left(\mathrm{C}_{8}, \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(k)}$ are cordial graphs.
2) All non- isomorphic one point union on k-copies of graph obtained on $\mathrm{G}=$ triple-tail $\left(\mathrm{C}_{8}, 2 \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(k)}$ are cordial graphs.
It is necessary to investigate the cordiality and invariance for one point union graph for the general case when $t$ pendent edges are attached at each three vertices of $\mathrm{C}_{8}$.
References:
[1]
Bapat Mukund, Ph.D. thesis submitted to university of Mumbai. India 2004.
[2] Bapat Mukund V. Some Path Unions Invariance Under Cordial labeling, IJSAM feb. 2018
issue.
[3]
I.Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars

Combin., 23 (1987) 201-207.
[4] J. Clark and D. A. Holton, A first look at graph theory; world scientific.
[5]
Harary, Graph Theory, Narosa publishing ,New Delhi
[6]
Yilmaz, Cahit, E-cordial graphs, Ars combina, 46,251-256.
[7]
J.Gallian, Dynamic survey of graph labeling, E.J.C 2017
[8]

> D. WEST, Introduction to Graph Theory, Pearson Education Asia.
${ }^{1}$ Mukund V. Bapat, Hindale, Tal: Devgad, Sindhudurg
Maharashtra, India 416630
mukundbapat@yahoo.com

